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Abstract—A constitutive model for concrete, built within the framework of rate-independent theory
of plasticity. is presented. The model invokes the concept of a failure locus which is introduced a
priori as a path-independent criterion. The shape of the deviatoric section of this locus is influenced
by the value of the confining pressure. The yicld surface is assumed in a similar functional form to
that of the failure locus. and its evolution is described in terms of a suitably chosen damage
parameter. The plastic flow is governed by a non-associated flow rule. The material characteristics
are strongly influenced by the actual confining pressure and display a smooth transition from a
ductile to brittle behaviour. The procedure for identification of material parameters is explained in
detail and the effectiveness of the concept is verified for a number of loading paths. The results of
numerical simulations are compared with the experimental data available in the literature.

|. INTRODUCTION

A realistic solution to a structural problem involving plain or reinforced concrete depends,
to a large extent, on the choice of an appropriate constitutive law. Consequently, in recent
years considerable rescarch has been focused on modelling of mechanical behaviour of
concrete. The existing formulations have borrowed various theoretical frameworks from
continuum mechanics: non-lincar clasticity[1-3], rate-independent plasticity[4-6], endo-
chronic theory(7, 8], as well as plastic-fracturing theory[9, 10].

The mechanical response of concerete is very complicated and it scems unlikely that
any phenomenological approach will ever be able to embrace all possible variations in
material characteristics. The objective of this paper is to propose a relatively simple rate-
independent theory which adequately reflects certain typical trends in concrete behaviour.
These include : a progressive transition from compaction to dilatancy, sensitivity of material
characteristics to confining pressure including a continuous transition in failure mechanisms
from ductile to brittle. The concept is built within the framework of the theory of elasto-
plasticity. The deformation process is governed by a non-associated flow rule and involves
a progressive cvolution of the yield surface which is described in terms of an appropriate
hardening/softening parameter.

In Section 2 basic assumptions incorporated in the formulation are outlined. The
mathematical details concerning the form of failure, yield and plastic potential loci are
provided. followed by a discussion of strain hardening/softening characteristics. The section
is concluded by presenting the appropriate constitutive equations. Section 3 is concerned
with identification of material parameters involved in the formulation. Finally, in Section
4, an extensive discussion on numerical effectiveness is provided. The performance of the
model is verified for various loading histories imposed on different types of concrete.

2. A CONSTITUTIVE MODEL FOR CONCRETE

In order to provide a general mathematical formulation the following stress invariants
are introduced :

0="{sin"' ( T:i_}) —n/6 < 0 < /6. n
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planc).

In the equations above s, = a,,— /30,0, denotes the stress deviator, whereas 0 represents
the angle measurce of the third stress invariant J; = /355,05,

The proposed description invokes the concept of a path-independent failure (limit)
locus, F(g,,) = 0 which is introduced « priori. The progressive deformation of the material
is described in terms of evolution of the family of yield surfaces, f(#,,. &) = 0, where s a
suitably defined damage parameter. The instantancous direction of plastic flow is deter-
mincd by a non-ussociated flow rule, which involves the existence of the family of plastic
potential surfaces defined in a parametric form W(a,,) = const. The material characteristics
are largely affected by the value of the confining pressure. The formulition assumes a
smooth transition from a ductile (stable) to a brittle (unstable) response. This is enforced
by selecting an appropriate form of strain hardening/softening function. In what follows,
major assumptions embodicd in the proposed concept are outlined together with relevant
mathematical details.

2.1, Failure (or limit) locus

Failure criterion defines maximum strength of concrete under any possible combination
of stresses. It is assumed that this criterion is not influenced by the deformation history and
can be postulated a priori. Based on existing experimental evidence[1 1], the following form
of the fuilure locus is proposed :

F=ua <i~~>+a (~—§——~>:— (a + I) =0 )
~\e0 £ T T \g0) 1 )T 2

where a,, «,, and «, are dimensionless material constants, whereas f; represents uniaxial
compressive strength of concrete.

In the principal stress space eqn (2) represents an irregular cone with smooth curved
meridians and a non-circular convex cross-section in the deviatoric (n) plane (Fig. 1). The
shape of the n-plane sections (defined through the function g(6)) is assumed to be strongly
influenced by the value of the confining pressure. The function g(0) is selected in the form
proposcd in Ref. [12]

(\/(l +a)—\/(l —a))K
) = e N — = const. (a— 1 3
I = it —d(—a+ (1=K —asin 3 <7 @=bh Q)

which satisfies g(n/6) = | and g(—n/6) = K and for a = 0.999 guarantees convexity for
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K > 0.565 (see Ref. [12]). Other suitable representations of g(8) are discussed in Refs
[12.13]. In eqn (3) K = 6,/6.. where . and &, represent the maximum values of &. for
I = const..incompression (6 = n,/6) and extension (f = — n/6) domains, respectively. In the
present study K = K([) is assumed and the following simple function describing variation of
K is chosen

K= I—Kg e~K,(u,+Ir;) (4)

where K, and K, are material constants. It should be noted that according to eqns (3) and
(4) the shape of the n-plane section changes from a curvilinear triangle for low hydrostatic
pressures to nearly circular at high pressures (/ — o0 implies K — | in eqn (4)).

For a further discussion it is convenient to write eqn (2) in the following parametric
form:

F=d—g(0)d. =0 (5
where

. —ack @i+ daya + 1 4)

C

/.-

2“2
2.2, Yield loci

In order to define the family of yield loci a similar functional form as that in cqn (5)
is employed, i.c.

S =a-p()g)s. =0 (6)

where f(3) represents a hardening/softening function and ¢ is a suitably chosen damage
parameter. In a ductile regime (at relatively high confining pressures), in which material

characteristics are stable, the function (&) is selected in the hyperbolic form
¢
(&) = ———: 7
B(&) AT B (N
where A and B represent material constants and & is defined by
d r _ dl-p . z d z 8
5 = ‘-b' s &= S ( )

In eqn (8),. di™ is a measure of plastic distortions
dé? = (def, duf’,)"vz; def, = del, — 19, defs

whereas & = const. is a factor defined through a parametric equation

®(1.0) = [g(())(a,-}- ;)] =& )

Incorporation of ® in eqn (8) is motivated by the experimental evidence. The proposed
functional form eqn (9), allows typical trends in the variation of material characteristics
with both 7 and @) to be simulated, as discussed later in this paper.

It should be noted that, according to eqn (7), B(S) = | as { — o (since B=x |, eqn
(30), in the next section), which implies that the yield surface asymptotically approaches

SAS 24:7-p
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Fig. 2. Plastic potential surface in meridional plane.

the fuilure surface. On the other hand, (&) = 0 for ¢ = 0, which indicates that, in the
proposed approach, the size of the initial yield surface is reduced to zero.

2.3, Plastic potential surface

Experimental evidence suggests that in a ductile regime a smooth transition from
compaction to dilatancy takes place prior to fatlure. A similar trend is also observed in
certain geological materials (c.g. dense sand) and can be adequately modelled by assuming
a non-assoctitted flow ruie and defining an appropriate form of the plastic potential{i4].
Recognizing this analogy, the plastic potential function is adopted in a similar form to that
proposed in Ref. {14]. i.c.

- I
W= g+ In ({.) = () (gL)]

{

where 7 = a, /. + 1 and a, is a constant which defines the location of the apex of the plastic
potential surfice in the tensile domain. Morcover, the parameter n, represents the value
of y = 6/(g(thT) at which the transition from compaction to dilutancy oceurs (at # =
e, def = 0). It is assumed that such transition takes place along the locus

f=d—2()d. =0 (11)

in which x is a material constant.

Figure 2 shows the meridional section of the family of plastic potential surfaces. In
order to satisfy the condition of irreversibility following from the second law of thermo-
dynamics, i.e. g, def; 2 0, all surfaces must be convex with respect to the origin of the stress
space. To comply with the latter requirement an appropriate evolution law for the set of
¥ = 0 defined by eqn (10) must be provided. Denote by 1, the value of y, at /=0 and

dy = d,

o —a, + \/(uf +4da.ay))
2(1:(/(\

(12)

Ny =

and let the corresponding plastic potential surface. eqn (10), be W, =0 (Fig. 2). It is
assumed that for g, < n, all subsequent plastic potential surfuces are obtained by an
isotropic expansion of ¥, = 0 under a, = a, = const. If the stress point falls inside the
domain enclosed by W, = 0 the family of W = 0 satisfies the constraints 5. = 1y, @y < d;.
The latter assumption implies that inside W, = 0 all subscquent loci are reduced in size
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and the apex gradually migrates towards the otigin, 0 € @, € ¢,. Mathematical details
concerned with identification of the current plastic potential are provided in Appendix A.

2.4, Strain softening response

The mechanical response of concrete is largely influenced by the value of confining
pressure. At relatively high pressures, a pattern of numerous microcracks develops and
material characteristics display a stable nature. As the confining pressure decreases. a
gradual transition from ductile to brittle behaviour takes place. In the brittle regime. distinct
macrocracks form. generating an unstable material response.

In the present concept the transition from a stable (ductile) to unstable (brittle)
response is modelled by an appropriate generalization of the hardening function (eqn (7).
The form of this function is suitably selected to reflect a gradual change in material
characteristics from strain hardening (for high confining pressures) to strain softening with
progressively increasing rate.

Assume the following generalization of the function B(&) specified by eqn (7):

PO = 45 s l1-61—em ) (13)
where
sl (0100
and angular brackets ¢ > are defined according to
0 ifxg0
v = {x if x> 0. (14)

In eyns (13) & represents the value of & corresponding to the maximum value of f# = ff;,
(1) J.) is evaluated at # = fi; and (///.); denotes a normalized value of confining pressure
at which a transition from ductile to brittle behaviour takes place. Moreover, y, g and H
represent material constants and @, defines the residual strength of the material.

According to egn (13a), the inception of strain softening takes place at & = &. In this
paper, the transition to unstable behaviour has been described in terms of a path-inde-
pendent criterion F— 0 under f < [, In general, however, the value of & can be determined
more rigorously using an appropriate strain localization criterion derived from con-
siderations of stability of the constitutive relation (bifurcation problem, sce e.g. Ref. [15]).
The latter approach is currently under investigation.

The constant C, specified by eqn (13b), controls the rate of strain softening in the
post-bifurcation mode. After inception of strain localization, the sample is no longer
homogencous and to model precisely its response one should refer to a boundary value
problem. The approach advocated here is based on the concept of an equivalent continuum,
similar to that introduced in Ref. [16]. Strain softening is vicewed as a local phenomcenon
occurring in a “smeared” sense at a material point. Equation (13b) incorporates the “'size
effect™ by employing constant ¢, which associates the rate of softening with the relative
volume of the sample, sclected here as a characteristic dimension. Specification of @, is
discussed in detail in Appendix B.

It can be shown that. according to eqns (13), for y > 1.0, the following conditions are
satisfied :
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It i1s also evident that for C=0 (£ > [;) eqns (13) reduce to eqn (7) (strain hardening
response), whereas / — —u, /. implies C - x which leads to a perfectly brittle response.
Hence. the function defined in egns (13) satisfies all mathematical requirements for a
continuous change of material characteristics from ductile to brittle.

In the strain softening range, the deformation process is again described in terms of a
non-associated flow rule with the plastic potential specified by eqn (10). The zero dilatancy
locus. as defined in the stable regime by eqn (1 1). is assumed to undergo gradual contraction
with a decreasing value of

F=d-Prg(hs. =0. (16)

The above functional form enables the modelling of progressive dilation of the material
during the unstable phase.

Finally. in the brittle regime. the non-uniform deformation mode consists of either
sliding along asperities or, in certain circumstances, an abrupt fracture, i.c. opening of a
tensile microcrack. The former mechanism s completely described by eqns (13) and (15).
whereas the latter one involves an instantancous reduction of all stress components to zero.
The fracture domain (OAB) is shown schematically in Fig. 1(b). If the stress path, after
reaching the failure surface, penetrates into this domain, an abrupt fracture takes place. If,
on the other hand, the residual strength envelope (as implicitly defined by §,) is reached
first, an unlimited plastic low commences. At this time, the extent of the fracture domain
cannot be precisely defined due to luck of adequate experimental data. One can speculate
only that this domain is confined to a vicinity of the tensile branch of the hydrostatic axis.

1.5, Formulation of constitutive equations
Assuming additivity postulate between the elastic and plastic strain increments, a
generalized Hook's law can be written as

da,, = D (dey —def) (17)

where Dy, represents the elastic constitutive matrix. During an active loading process, the
consistency condition df = 0 has to be satisfied, i.c.

e
o oy 0Ll

o, O dE

dé=0 (18)

in which f(g,,, &) = 0 is defined according to eqn (6). Introducing the non-associated flow
rule

'T\iJ
def, = di. & (19)

o,

the differential d&, defined by eqn (8),, can be written in the following form

B g oY
s = di(clcv —dev {—) / o (20)

¢, ca,,

in which dev ¢W/de,, represents the deviatoric part of O\V/ée,;. with W(a,,) = const. given
by eqn (10). Thus, substituting eqn (17) into eqn (18) and utilizing eqn (20) one obtains
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(e ]
di= m (z.:(;_‘—/ ket dCu) n
where
\P ‘\P 12
2 dp (de\ %— dev ;_ ) Y v
C co,, 17 c ¢
=—2r 2 U Y H = LD 2
4 g ds () > He fe,, "o, (

and H, represents the plastic hardening/softening modulus. The mathematical details con-
cerned with the determination of A are provided in Appendix A.

The parameter d/ can also be defined in terms of stress increment do,,. Introducing
eqn (20) directly into eqn (18) yields

of

!
di = ;{"‘ (;1;(16,;). (33)
p Oy

Finally, substitution of eqn (21) in cqn (17) leads to the constitutive equation in a con-
ventional form

. N of .
D‘II"I (’j{}"— “'1;’.4“ mnkl
do, =\ D¢, — ORI L déy. (24)
! ! Ho+H,

Equation (24) describes an active loading process during which irreversible deformations
are generated. In the hardening regime, £, > 0, such loading histories are constrained to
stress paths satisfying

of -
S =0 and ég—dg” > 0. (23)
i}

It should be noted that inequality (23) implies d4 > 0 in egn (23). This ensures (in view of
convexity of the plastic potential, eqn (10)), that the energy dissipated during plastic flow
is always positive.

In the softening regime H, < 0, the postulate of irreversibility again requires positive-
ness of di. In order to distinguish between loading and clastic unloading, definition (21)
can be implemented, yielding

A
f=0 uand 5({- Diyydey >0 (26)
o,

as the criterion for an active process. According to this inequality plastic deformations will
occur whenever the stress increment obtained from the clastic solution doj, = D,,, dey,. is
directed outside of the yield surface. Criterion (26) is restricted to cases when H .+ H, > 0,
i.c. there exists a locally unique response in stress rate for any specified strain rate. It should
be noted that for H.+ H, < 0. the deformation process ceases to be locally controllable.
The question of static admissibility of the present formulation is addressed further in
Appendix B.
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3 IDENTIFICATION OF MATERIAL PARAMETERS
The proposed constitutive model involves the following material parameters:

(a) parameters a,, ., ay, Ky and Ky, defining the fatlure envelope (eqn (2));

(b) parameters A and B, involved in the strain hardening function (eqn (7)) ;

(c) parameters M, oy, u, associated with the strain softening response, as well as
transition pressure (//£.), and parameters ¢, b, (eqns (13)):

(d) dilatancy parameter « (eqn (11)).

In addition, the elastic properties should also be specified, namely Young's modulus, L,
and Poisson’s ratio, v.

Most of the above listed parameters can be determined a priori based on extensive
experimental data available in the literature. Thus, the effective number of parameters
required to identify the model can be significantly reduced. The details concerning the
identification procedure (based on the cxperimental data from Refs [3, 17-22]) are sum-
marized below.,

3.1, Parameters defining the failure envelope

The constants a,. a., ay. Koand K| are related to the form of the failure locus. In order
to identify these parameters two steps were followed. First, along the compressive meridian
(0 = m/6). eqn (2) was fitted to the data provided in Refs [3, 19-22] by the least square
approach. It was assumed that @, = 0.3, which corresponds to f, = 0.1/, with f, representing
the uniaxial tensile strength of concrete. Subscquently, the form of the extension branch
(0 = —n/6) was determincd. In this case, two failure states were choscn to be satisfied
exactly, namely : uniaxial tension f; = 0.1/ and a biaxial compression f,. = — .16/ [18].
Thus, throughout the identification process. f. (i.e. uniaxial compressive strength) was
assumed as the only independent parameter.

The procedure described above resulted in the following values of the constants:
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a, = 19253, a,=0.5635 a;=03, K;=043416, K, =0.07439. 27

Figure 3 presents meridional sections of the failure locus in both compressions and extension
domains. The plot is normalized with respect to f. and the proposed analytical form is
compared with the experimental data provided in Refs {3, 19-22].

When selecting the material constants according to eqns (27). the only information
required to identify the form of the failure locus is that concerning the value of £,. In the
case when the results of a uniaxial tension test are also available, an exact value of f; can
be used instead of an average approximation f; = 0.1f.. Substituting the conditions of
uniaxial tension {6, = [, ¢, = ¢, = 0) and biaxial compression {6, = ¢, = f.. 6: =0} in
eqns (4) and (3) leads to the following modifications of parameters a;. K, and K, (eqns (2)
and (4)):

S

(1333

~

Ky = : In (VF”KL>
YT =2l ) =K
/\’n = (| .,.[\“) c:‘\'l‘»’k/’i«' (28)

where A, and K, represent the values of K corresponding to uniaxial tension and biaxial
compression, respectively

Wy all
T3 —a @i+ 8arfilf)
/3 “:A/;w//;

. A
I\lw =

- : o (29
3 ""“t+\/(‘”+4{12(3/t/jc“2]M/,/c))

and fi. = — L16f,, according to Ref. [18].

3.2, Hardening function parameters

The expression defining the hardening function, eyn (7)., contains two material con-
stants A and 8. Both parameters can be identified by fitting eqn (7) to the test duta plotted
in the (6/6., &) plane, where 6¢ = g(0)d.. Using the data from a serics of [ = const. tests
provided in Ref, [17], the following values were arrived at:

A = 0.000085: B =0.95. (30)

The results of the numerical simulations showing the variations of #— &P characteristics in
both compression and extension programs, are presented in Figs 4(a) and (b), respectively.

In the subscquent section, predictions of numerous experimental tests for different
types of concrete (f, ranging from 15.3 to 62.1 N mm %) are provided. The results allow
one to speculate that the values of 4 and B as defined by egns (30) are not affected by the
actual uniaxiaf strength of the material and can be adopted a priori.

3.3. Dilatancy parameter

This parameter defines the locus along which the transition from compaction to
dilatancy takes place (egn (11)). Experimental evidence indicates (e.g. Refs [17, 18]) that in
various types of concrete the maximum volumetric strain is reached at approximately 95%
of the failure stress. Conscquently, x = 0.95 may be assumed in eqn (11).

3.4. Strain softening paramcters

At the present time, the parameters, H, u, vy and (//f)r. eqns (13a) and (13b),
cannot be determined precisely due to lack of adequate experimental data. The existing
experimental evidence[3, 23]. however, supports the proposed conceptual framework, i.e.
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there is a brittle-ductile transition value of conlining pressure {(// f.), which corresponds
to initiation of the strain softening response.

Assume 7 = 2, which satisfies requirements imposed by egn (15). Then, the rate of
strain softening is controlled by #7 and . Both these constants can be determined from,
e.g. a uniaxial compression test by matching (trial and error process) the actual strain
softening characteristic. The parameter ¢,, eqns (13a) and (15), defines implicitly the form
of the residual strength envelope. It is recognized that ¢, may depend on the confining
pressurc through a parametric equation @, = ¢(/) = const. It scems however, that a
sufficicnt accuracy in numerical predictions may be attained by assuming @, = const., which
implies that the residual strength locus has a similar anaiytical form to that of the yicld
surface. Experimental investigations reported in Refs [24, 25] indicate that

limf=02~03

3
DS

for both uniaxial tension and uniaxial compression tests. Consequently, according to eqn
(15). . = 0.7 ~ 0.8 may be assumed in eqn (13a).
Figure 5 shows the variation of material characteristics with the confining pressure as
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Fig. 6. Various loading paths considered in numerical simulations.

predicted by the proposed model. For the strain softening branch, some arbitrary values
of H = 1000 and i = 6 (B = 0.95) were selected in order to demonstrate the basic trends
in material response. The simulations were completed assuming ¢, = | in eqn (13b). The
influence of this parameter is discussed in detail in Appendix B. The obtained characteristics
are, in a qualitative sense, quite satistactory and reflect a smooth ductile-brittle transition.

4. NUMERICAL PREDICTIONS

In this section the effectiveness of the proposed model is verified for a number of

loading paths imposcd on different types of concrete (f; ranging from 15.3t062.1 Nmm ~°).
The loading histories considered are indicated in Fig. 6 and include:

Path I : hydrostatic compression followed by loading along the compressive meridian
under dé > 0, [ = const.

Path 2: hydrostatic compression followed by loading into the extension domain under
dé > 0, I = const.

Path 3: hydrostatic compression followed by uniaxial compression (under
g, = ¢ = const.).

Path 4: proportional loading historices : uniaxial tension, uniaxial compression, biaxial
tension and biaxial compression.
The results of numerical simulations are presented in Figs 7—12. The predictions in Figs
7-11 are restricted to the strain-hardening regime (due to lack of sufficient experimental
data). Figures 7 and 8 show simulations for stress paths | and 2, respectively. Some of these
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Fig. 7. Numerical simulations of various compression programs under { = const.[17].
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results have already been referred to in Scction 3 for the purpose of identification of material
parameters, Figures 7(a) and 8(a) show the normalized deviatoric characteristics, whercas
Figs 7¢b) and 8§(b) present the corresponding volume change. Numcrical predictions are
compitred with the experimental data provided in Ref. [17]. Figure 9 presents the predictions
corresponding to path 3. The behaviour of two different types of concrete 1s simulated
(/. = 153 and 62.1 N mm ?) under different confining pressures. A complete stress -strain
history is provided and the results are compared with those quoted in Ret, [17]. Subsequently
Figs 10 and 11 are concerned with uniaxial and biuxial programs at zero confining pressures
(paths 4). Figure 10 shows the material characteristics as predicted in compression fests,
whereas Fig. 11 refers to extension programs. Experimental data trom Ref. [18] are used for
comparison. Finally, Fig. 12 presents the simulation of another uniaxial compression test
(at 7 = 0 initially) as performed by Wung et /.[26]. In this case, a complete deformation
history is traced including the unstable branch. Prior to fuilure, the material undergoes
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Fig. 9. Predictions for various uniaxial compression tests at different confining pressures[17]:

() £, =153Nmm % (b) £, =621 Nmm~*
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Fig. 10. Numerical simulations of uniaxial and biaxiad compression tests[18].

compaction with progressively decreasing rate. During the strain softening phase, a sig-
nificant dilation 15 predicted which is in accordance with the existing experimental
evidenee[27].

In general, for the cases presented, the agreement between the numerical simulations
and the experimental data is quite satisfactory. FFor high confining pressures the model
tends to underpredict the volumetric strains (Fig. 8(b)). To improve the performance in
that respect the form of plastic potential would have to be altered accordingly. The observed
discrepancy is not very significant however, 1o Justify further complications in the
formulation.

5. CONCLUSIONS
A relatively simple rate-independent plasticity model has been presented for predicting
the behaviour of conerete under a general three-dimensional stress state. The model captures
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Fig. 11. Numerical simulations of uniaxial and biaxial extension tests[ 8],
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Fig. 12, Simulation of unstable response under uniidial compression[26].

the most important trends of concrete behaviour under static loading, ¢.g. compaction-
dilatancy transition, sensitivity of material characteristics to confining pressure, the phen-
omenon of a continuous ductile- brittle transition. In addition to clastic propertics. only
one material constant f; is required (or two constants f. and f; if the latter is available) to
completely define the material response in a hardening regime. A very attractive feature of
the model is the fact that both britde and ductile behaviour are described within the same
phenomenological framework. This is certainly advantageous in the context of future
numerical implementations.

The cffectiveness of the model has been verified for a number of stress paths. The
numerical predictions are, in general, quite satistactory. The model does not predict plastic
deformations for a hydrostatic path which is assumed to be a neutral one. Recognizing this
limitation, it is believed however, that such a path is unlikely to arise in the context of a
boundary value problem.

The applicability of the model is, at the present time. restricted to monotonic loading
histories as no irreversible deformations are accounted for during stress reversals. Extension
of this concept to cover the cases of fluctuating foad is currently under investigation.
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APPENDIX A, DETERMINATION OF CONSTITUTIVE TENSOR
According 1o eqn (24), the nuderial response is governed by an incremental constitutive relation
da, = DI, dey,

in which 27, 1s a fourth-order tensor defined by

I Ay
l)f,,.‘, h] A D
P T T S L CFpg o
ki T pkf
! ! Ho+ H,

2 s A Of hYY np 1
o= Lope, St g o2 <dcv ¥ dev ') ‘.

™ ey " o od ‘a,, ‘o

"~ " "

To specify the form of DT, the expressions defining the appropriate gradient tensors have to be provided. The
gradient of /= 0 can be written in the form
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From eqns (1), defining the stress invanants, one obtains

o cF . éJ,

= = = aEl T = S8, — 1670,
‘o, fo, 26 ¢, VT
so that
cy 8 éé 78 e,
ée,  é6ée,  éJyéa,
where
ﬂ_ KRRV Lﬂ: o V3
&6 26tcos 30T OJ, 26" cos 38

Equations (6). (3) and (4). which define the yield locus. lead to

o W =K) I —~ I ~asin 30

A —1:(:),a<n){'5~‘ﬂ.f.ﬂ(1—”—( Mytlrad = ytlZdsin 3 ”>+ !
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o
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In order to detine the current plastic potential surface, the following numerical procedure can be implemented.

(1Y For W, >0 (ory - n,)
Referring to Fig. 2, define the parameter g, as

Gt

T O S+ 1)

where, according to eqns (5) and (1)

@ =l (())/: —i, + / i +4a z+I:
=y s [ \/ ty ) iy / .

Substituting the above relations into eyn (10) and noting that [, = ¢(u, /. + 1°), an algebraic equation in terms of
1* is ohtained. Atter solving this cquation, an appropriate value of 7, can be determined which uniquely defines
the current plastic potential
(2) ForW, <0

The value of parameter o, cgn (12), cun be directly substituted in eqn (10), Noting that [, = ea, /., eqn (10)
cun be solved for a,, which completely defines 'V = 0.

Once the current plastic potential surfiace has been identitied, the gradient tensor can be evaluated from

[3 SR Y BRA JENL S I A

Rl o
G la, O Ca,,

in which

o d

R - - +n.g)

cl

‘vl}l

‘=10

P _ Ja(l = K)gt)d cos 3

o K+ @)= (T=a)(h —asin 30

Finally, in view of eqns (6) and (7)

M i A . . .
:7, = —g{hd, . :i = v B {strain hardening regime only)

which completely defines the plastic hardening modulus /1.
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APPENDIX B. SPECIFICATION OF FUNCTION $, AND CONSIDERATIONS ON STATIC
ADMISSIBILITY

In Section 2, the strain softening phenomenon has been described by employing the concept of an equivalent
continuum. the response of which is sensitive to the actual physical dimensions. The “size effect” has been
incorporated through the constant @,. eqn (13b), which is supposed to relate the rate of strain softening to the
geometrical aspects. Instead of considering the details of the sample geometry, assume, for simplicity, that its
total volume constitutes a characteristic parameter which affects the softening response, i.e.

. = ¢,(1.V) = const.

in which ¥ represents the volume of the sample.
The function ¢, can be assumed in the following general form

$ = l+1|(,)a2({7)

where ¥, denotes a representative (or standard) volume for which the strain softening characteristics are assumed
to be known. The function x, should be selected in such a manner as to reflect a progressive increase in the rate
of strain softening with increasing }/V, ratio. Moreover, for ¥ = V, there must be «, = 0 which implies §, = I.
Assume. for example, the following simple representation

(-

In the above equation A represents a constant.

The degree of sensitivity to geometrical aspects may vary with the confining pressure. This is accounted for
by introducing the function a,(/). In general, this function will assume the value from the interval 0 € a, < 1.
a, = 0 implics that the strain softening characteristics remain unaffected by the volume of the sample, whercas
a, = | expresses maximum sensitivity. As an example, the following trigonometric function may be considered :

- ay+ i fn
2,(/) = sin [ ‘u,_(‘lf]:){ :|7:.

Here, £ — —a f, and § — [, yiclds x, = 0, whereas max 2, = 1. Figure Bl shows the strain softening characteristics
for different 1/, ratios as predicted by the above specitied functions.

Incorporation of , in eyn (13b), requires further investigation concerning the static admissibility of the 6 — &
characteristics. During the strain softening phase a progressive decrease in 6 must be accompanied by the
corresponding increase in the value of £ otherwise an abrupt loss of equilibrium will take place. In mathematical
terms, the following conditions must be satistied :

dif +di® > 0

where the superseripts refer Lo the elastic and plastic part of dé, respectively.
According to eyns (¥)
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Fig. BI. Influcnce of &, on the rate of strain softening (x, = ).
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dg dg

=%
so that

d
dé® = ———dB.

TraY

For the elastic part
4= ds= % qp

where G represents the elastic shear modulus.
Combining the expressions for dé” and d€°, one obtains

& é
—_— -] d 0.
(Jmc * ﬂ’(é)) h>

In view of dff < 0, the above inequality reduces to

i

VG

+/—;,(3<0

or, after a simple rearrangement

dg o 0]
a:: > _\/(-)Gg;

For an arbitrary /, the function dff;d§ reaches its minimum when

a2
=0
dgt

In order to find this minimum let us simplify the function #(£) in eqn (13a) to
B = Be{l =G [l e 50
After differentiation with respect to £, one obtains

d*g wa oyl s
= =260 e (120~ 0% = 0

which leads to

so that

min (j/:) = -8 JQ2C) e 2

Substituting the above equation in the criterion for static admissibility, one obtains

(G@a01* ¢

€< ER200E
Gfh)°

Finally, in view of eqn (13b), the following inequality is arrived at:

G'c oY
H< (CIATU/TA <g>
2 AEL AL '
ﬁ,ﬂr‘ﬁ‘[ a,+ U f)e ]

which represents a constraint imposed on the sclection of # in eqn (13b).



